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Abstract

The intention is to provide a beginner’s tutorial on implementing
logics in Isabelle.
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1 Section2.thy — All

theory Section2
imports Main ~~ /src/HOL/ Library / Order-Relation

begin

1.1 Syntax and Semantics — Types in Isabelle

The set of atomic propositions is formalized as a type.! Roughly speaking
types are sets as known from set theory, but there are some differences.
Making good use of types is one of the things one has to learn using Is-
abelle/HOL. For example, formalizing atomic proposition as a type imposes
a constraint on the set of propositions:

‘Types in Isabelle are non-empty.

typedecl atProp

! See [6, p.173] for further explanations on typedecl.



Next we use the datatype declaration to define formulas. All is called a
constructor, which can be considered as a function that takes two arguments
of type atProp and produces an element of type formula. The addition (All
_ are _) is optional, but allows us to write, as in the lecture notes, All p are
q instead of All p q.

datatype formula = All atProp atProp (All - are - )

Inductively defined sets are best formalized using the datatype declaration,
for example, because Isabelle then provides inbuilt support for induction.
The print-theorems command is not necessary, but if you move your mouse
over it in Isabelle you can see which theorems you get for free by using the
datatype declaration. For example

formula.eq.simps:
equal_class.equal All 7atPropl are 7atProp2 All 7atPropl’ are 7atProp2’
\<equiv> 7atPropl = 7atPropl’ \<and> 7atProp2 = ?7atProp2’

says that two formulas are equal iff their respective atomic propositions are
2
equal.

The next definition describes models over a carrier as models parametric in
an an aribrary (non-empty) type called ‘a. The arrow = and set are type
constructors, where set is the type of all subsets of ‘a and = constructs the
type of all set-theoretic functions. To summarize, a model over ’a is a func-
tion from atomic propositions to the powerset of ‘a, that is, it is an element
of the type (atProp = 'a set), for which we introduce the abbreviation®

type-synonym ‘a model = (atProp ='a set)

In particular, the notion of model above cannot have empty carrier. Alter-
natively, we could have defined a model over ’a as a pair of a possible empty
subset of 'a and a function (atProp = 'a set) but then we would need an
extra condition to make sure that the image of the function lies inside that
carrier. In other words, we get the additional complication of specifying the
well formed models among the premodels as in

type-synonym ’‘a pre-model = 'a set x (atProp = 'a set)

definition wf-model :: 'a pre-model = bool
where wf-model M = let (M,f) =M in (! p. fp C M)

In the following we will only use the first alternative and not make use of
pre-model and wf-model.

The lecture notes continue with the definition of satisfiability
MEAlpareq iff [p] C [q]

which we formalize as follows.

2See [6, Section 8.5.2] (and in particular p.176) and [3, Section 2.4] for more details.
3See [6, p.24] for more on type_synonym.



fun satisfies :: 'a model = formula = bool (- |= -)

where
satisfies M (All x are y) = (M C M y)

The lecture notes continue with the following example.

Example. Let P = {n,p,q}. Let M = {1,2,3,4,5}. Let [n] = 0,
Ip] = {1,3,4}, and [¢] = {1,3}. This specifies a model M. The following
sentences are true in M: All n are n, All n are p, All n are ¢, All p are p, All
q are p, and All q are q. The other three sentences in A are false in M.

The interesting question is how to formalise the three “let” statements above.
In particular, the “let M = ...” is formalized differently than the other
two. The reason is that the carrier M of the model is formalized as a type
parameter. Therefore we can instantiate it by defining a datatype:

datatype example-2-1 = el | e2 | e3 | ef | €5

The other two “let” statements are translated as assumptions. For the first
one, note that (UNIV :: atProp set) is the Isabelle way of naming UNIV as
the largest set in atProp set, that is, UNIV is atProp seen as a set. For the
second note that Isabelle infers the type of the carrier of M upon reading M
p = {el,e3,e4}, the elements of which are elements of the type ezample-2-1.
We can now formalize and prove the claims made in the exercise.

lemma example-2-1:
assumes (UNIV :: atProp set) = {n,p,q} A n#p A n#q A p#q
assumes M n ={} AN Mp={el,el,e4} N Mq={el,e3}
shows M |= All n are n

and M FAlln are p

and M Al n are g

and M | All p are p

and M = All g are p

and M = All q are q

and - (M | All p are n)

and - (M E All p are q)

and - (M E All q are n)

The proof of the 9 statements can be done automatically using sledgehammer
[2]. Sledgehammer is an Isabelle command that calls automatic theorem
provers, either locally installed or over the internet, in order to prove the
current goal. For us, sledgehammer is a crucial ingredient of Isabelle. It
allows us to conduct proofs close to the level of pen and paper mathematics.
Whenever in these notes, or in the theory files, you see a by (metis ...) this
shows a proof found by sledgehammer. Actually, for better readability of
this document, we made most of these automatically found proofs invisible
as can easily be seen by comparing directly with the theory file.



We emphasize that the proofs by(metis ...) are not meant to be readable
by humans. In our notes, they are usually proofs that are obvious on the
mathematical level of abstraction. On the other hand, if you know that such
a proof depends on a particular fact it is a good idea to check whether this
fact is contained in the list of facts appearing in the dots of a by (metis .. .).

The lecture notes continue with extending satisfiability to sets of formulas
MET it M | ¢ for every ¢ € T
and to semantic entailment between sets of formulas and formulas
I' |= ¢ iff for all M: if M =T, then also M |= ¢.

which we formalize as follows.

Overloading names, although possible to a degree, is not as
easy in Isabelle as it is in pen and paper maths. For example,
comparing the definitions of satisfies and M-satisfies-G one
would think that, as they have different types, both could
well have the same name, or, at least, use the same notation
=. But one problem here is that the parsing is done before
the type checking and ambiguous parse trees would result
(recommended experiment). So this is a point that requires
some compromise from the mathematician’s perspective.

definition M-satisfies-G :: 'a model = formula set = bool (- =M -)
where

M-satisfies-G M G =Vf. fe G— (ME[f)

If we want to define semantic consequence or entailment, we want to say
that G | ¢ iff VM :: 'a modelM = G — M = g. Due to the free type
variable ‘a we run into a slight technical difficulty. For reasons explained in
some detail in [1], every variable on the right of a definition also needs to
appear on the left. So we could write, using a dummy term ty, ...

definition entails-b :: formula set = formula = 'a = bool
where
entails-b G f (ty::'a) =V (M:'a model). (M EM G) — (M = f)

...but this definition has the disadvantage that it looks as if the function
entails depended on values of type ‘a. One way out is to use the “type itself”
construction, which provides a type depending on ‘a with only element (this
element is denoted by TYPE('a) and we will encounter it later). More on
the itself type can be found in [8].

definition entails :: formula set = formula = 'a itself = bool (- EG - -)

video



where
entails G [ (ty::'a itself) =V (M::'a model). (M EM G) — (M E f)

Further Reading. For general background on Isabelle see Paulson’s
original [7] (in particular Section 1 and 2). [7] also gives a reason why types
are assumed to be non-empty. In [6, p.119] one can find a model checker as
a worked out example.

1.2 Proof Theory — Rules in Isabelle

The deductive system A is given as

A All pare n  All n are g
All p are p XIOM All p are q

BARBARA

which is formalized as follows. (The 0 in 0 F - is an annotation to avoid
overloading wrt to - I - in the next definition.)

inductive derivable :: formula = bool (0F -)
where
A-aziom: 0+ (All X are X)
| A-barbara: [OF(ANl X are YV); O0F(AIL'Y are Z)] = OF(All X are Z)

Isabelle implements natural deduction. The Isabelle notation
for a rule of the shape

A B
C

name

is
name: [A;B] = C

as in the rules A-aziom and A-barbara above.

Something about ”inductive”

Let us look at how to reason in Isabelle using the natural deduction rules.
The following example is again from the lecture notes.

Example. Let I be
{All [ are m,All q are I, All m are p, All n are p,All [ are ¢}

Let ¢ be All ¢ are p. Here is a proof tree showing that I' - ¢:



————— AXIOM
All L are m All m are m ©
BARBARA

All [ are m All m are p
All g are [ All [ are p
All g are p

BARBARA

BARBARA

The proof tree can be implemented in Isabelle as follows.

lemma example-2-5:
assumes OFAIll [ are m
and OFAll q are [

and OFAll m are p
and 0FAll n are p
and OFAIl [ are g
shows 0+ All q are p

apply (rule-tac Y=I in A-barbara)
apply (rule assms(2))

apply (rule-tac Y=m in A-barbara)
apply (rule-tac Y=m in A-barbara)
apply (rule assms(1))

apply (rule A-axiom)
apply (rule assms(3))
done

Comparing the Isabelle proof with the paper proof, we see that in Isabelle
we reasoned backwards from the goal All ¢ are p. The first apply (rule-tac
Y=l in A-barbara), for example, corresponds to the bottom application of
the BARBARA rule.

here it would be good to have an exercise for the reader ‘

Later in the lecture notes we want to compare derivability from assumptions
with semantic entailment, so we define I' - ¢ as a variation of the above - ¢:

inductive derives :: formula set = formula = bool (- + -)
where
A-assumption: f € hs = hs b f
| A-aziom: hs F (All X are X)
| A-barbara: [hs F(AU X are Y); hs H(AIL'Y are Z)] = hs H(All X are Z)

Accordingly, we have the following variation of the above example.

lemma example-2-5-b:

video



fixes Ilmnpq
defines G-2-5 = {All | are m,All q are I,All m are p,All n are p,All | are ¢}
shows G-2-5 F All q are p
apply (rule-tac Y=I in A-barbara)
apply (rule A-assumption) apply (simp add: G-2-5-def)
apply (rule-tac Y=m in A-barbara)
apply (rule-tac Y=m in A-barbara)
apply (rule A-assumption) apply (simp add: G-2-5-def)

apply (rule A-aziom)
apply (rule A-assumption) apply (simp add: G-2-5-def)
done

The proof is similar to the first one, but instead of referring to an assumption
of the lemma, we use now the rule A-assumption. After applying the rule
A-assumption, Isabelle leaves us with a subgoal, namely All ¢ are | € G-
2-5 which is obviously true and easy to discharge by apply (simp add:
G-2-5-def). *

‘maybe a bit more about auto, simp, etc ... [6, Section 3.1] ‘

Next we come to our first mathematical result on the calculus, namely that
it is sound. Recall that TYPE(atProp) is the unique element of the type
atProp itself, which appears in the definition of = G.

lemma prop-2-2-1:
fixes G g
assumes G g
shows G =G g (TYPE(atProp))
using assms
proof (induct rule: derives.induct)
case (A-assumption)
show ?Zcase by (metis A-assumption.hyps M-satisfies-G-def entails-def)
next
case (A-axiom)
show ?case by (metis entails-def order-refl satisfies.simps)
next
case (A-barbara)
show ?case by (metis A-barbara.hyps(2) A-barbara.hyps(4) entails-def satis-
fies.simps subsel-trans)
qed

To quote from the book: The soundness proofs of all the logical systems in
this book are all pretty much the same. They are always inductions, and
the crux of the matter is usually a simple fact about sets. (Above, the crux

*A summary of rules is given in [6, Section 5.7]. Chapter 5 also contains a general
introduction to the logic of Isabelle.



of the matter is that the inclusion relation C on subsets of a given set is
always a transitive relation.) We almost never present the soundness proof
in any detail. The Isabelle proof gives another justification for skipping the
details of the mathematical soundness proof: After telling Isabelle that we
want to use induction and after listing the cases, the details of the proof
are done automatically using sledgehammer, that is, the three lines above
by (metis ...) are provided by an automatic theorem prover. For us, this
essentially means that no mathematical ideas are needed. °

It may also be worth noting that the Isabelle proof is quite a bit shorter than
the proof in the book. Usually, such easy proofs do not make it into the
literature. Nowadays that can be done without sacrificing rigor by delegating
these proofs to a theorem prover. Moreover, checking all the cases using the
tool may well be faster then checking the cases (carefully) by hand.

Further Reading. Section 3 and 4 of [7] contain an exposition of Isabelle’s
meta-logic and an example of an object logic.

1.3 Completeness — Math-style Proofs in Isabelle

Isabelle supports two styles of proof, apply-style and Isar-style. We have
seen an example of both. The proof for Example 2.5 was given apply-style.
This is very convenient for that type of problem, which consists in finding a
derivation in a calculus, the rules of which have been directly encoded using
Isabelle rules.

But the proof of the soundness result in Proposition 2.2.1 was written in
a very different style. As an exercise you might want to try and do the
soundness proof apply-style, starting with

apply (rule derives.induct)
apply (rule assms)

You will notice that you will need to know quite a bit about how Isabelle
proofs are implemented internally. Instead, the Isar proof language [9] allows
proofs to be written in a style much closer to informal proofs and is much
quicker to learn. This section will present more examples and some exercises,
for background and details see the introduction [5]. A useful resource is also
the Isabelle/Isar reference manual [9], in particular Appendix A.

5 Although it is clear that with automatic theorem proving becoming more and more
powerful it will happen more and more often that automatic provers will find proofs that
would require ideas from a human point of view. On the other hand, for the proofs of this
section, there is an astonishingly good match between the details one would hide in a pen
and paper proof and the details that can be discharged by an automatic theorem prover.



Coming back to the development of the syntax and semantics of our logic,
it is the next definition which is the crucial one as it links up both syntax
and semantics: Given a theory G, derivability induces a preorder on atomic
propositions, which is then used to define the notion of canonical model
below.

definition less-equal-atprop :: atProp = formula set = atProp = bool (- S- -)
where
less-equal-atprop w G v = G+ All u are v

We show that < is a preorder. We would hope that there is a theory about
orders and preorders ready for us to use and to find it we write:

find-theorems name:preorder

After which, in the output window, we find
Order_Relation.preorder_on_empty: preorder_on {} {}

Pressing the command key, hovering over the line above and clicking without
delay brings up the theory Order_Relation and the definition of preorder_on,
which takes two arguments, a set A and a relation, ie, a subset of A x A.
The relation in question is {(z,y) | © <G y}. The set on which this relation
lives can be given by using UNIV. video
lemma prop-2-4-1:
fixes G
shows preorder-on UNIV { (z,y). ¢ SGy }
proof (auto simp add: preorder-on-def)
show refl { (z,y). 2 SGy }
unfolding refi-on-def
using A-axiom
show trans { (z,y). © <SGy }
unfolding trans-def
using A-barbara
qed

As a side remark, the latex code of Proposition 2.4.1 and its proof in the book
is only 10% shorter, measured in number of characters, than the Isabelle code
(only part of which is shown above).

Next we give the definition of the canonical model of a theory G. In words it
says that in the canonical model the interpretation of the atomic proposition
u is the set of all atomic propositions smaller or equal to wu.

definition canonical-model G u = { v. v <G u }

The next lemma confirms that the canonical model of G satisfies G:

lemma lemma-2-4-2:
fixes G assumes M = canonical-model G



shows M =M G

proof (auto simp add: M-satisfies-G-def)
fix ¢ assume g € G
then obtain p ¢ where (All p are q) = ¢
then have p <G ¢ using A-assumption
then have M p C M ¢ using A-barbara
thus M E ¢

qed

Next comes the completeness theorem.

lemma thm-2-4-3:
assumes G =G (All p are q) (TYPE(atProp))
shows G F All p are q

proof —
def M = canonical-model G
have M = All p are q using lemma-2-4-2
then have M p C M ¢

have p <G p using A-aziom
then have p € M p using canonical-model-def

have p € M q using M p C M ¢
then have p <G ¢ using canonical-model-def
thus ?thesis

qed

end

2 How to write your own Isar proofs

theory Section2-exercises
imports Main ~~ /src/HOL/ Library/ Order-Relation
Section?

begin

This section is exeperimental. It asks the question whether the examples
and explanations from the previous section are enough to get the reader
started on its own proofs. Ideally, the reader would be able to make up
his own lemmas and proofs, but it is likely that the previous section is not
enough of a preparation for this. Therefore, this section gives some exercises
with hints and additional explanations, in an attempt to bridge the gap.°

Probably the most useful references for writing proofs in Isar are [5] and
Section 2.2.3 and Appendix A in [9].

5 Also refer to future sections that deal with more aspects of Isabelle

10



Here are a few items worth noticing for your first Isabelle exercises:”

e This document does not show the full Isabelle source code, so you need
to refer to Section2.thy to see the code of the previous section.

e [t is important to keep the spacing as eg in M p and not to write Mp.

e To write the symbol C in Isabelle, one can either find and select it in
the “Symbols” windows, or one can start typing \subseteq as in latex
and use the tab-key to select it. Similarly, for = type |= and tab.

e If you inspect the file Section2.thy in an editor, you will find that what
appears as C in jEdit is written \<subseteqg> in ascii.

e In case the parser is complaining try to put some extra round brackets.

e Isabelle distinguishes between inner and outer syntax. Inner syntax
must appear between quotes in outer syntax. These quotes have been
suppressed in the latex document, but are important in the theory file
Section2.sty. Single tokens such as atProp in typedecl atProp do
not need to be put between quotes.

e To get an idea what error messages such as “Illegal application of
proof command in state mode” are about, have a look at Fig 2.1 in [9,
Section 2.2.3].

The exercises are (at least at the moment) not ordered according to a di-
dactic concept but follow the order of the lecture notes

Example 2.1 states that there are exactly 9 formulas in A. Here we suggest
to prove this claim in Isabelle. As a warm-up we do:

lemma example-2-1-aa:
assumes (UNIV :: atProp set) = {n}
shows card (UNIV::formula set) = 1
proof —
obtain A where A = UNIV :: formula set by force
then have A = {All n are n} by (metis (full-types) UNIV-I assms empty-not-UNIV
formula.exhaust singleton-iff subsetl subset-singletonD)
then have card A = 1 by fastforce
thus ?thesis by (metis <A = UNIV))
qed

"This list needs to be extended and then probably structured in some good way.

11



The exercise is now to show the following. (Warning: this exercise may be
more difficult than the others). ®

lemma example-2-1-ab:

assumes (UNIV :: atProp set) = {n,p,q}
and n#p and n#q and p#q

shows card (UNIV::formula set) = 9

Example 2.2 from the lecture notes. Hint: Start the proof with
unfolding entails_def
proof rule+.”

lemma example-2-2:
shows {All p are q, All n are p} EG All n are ¢ TYPE (atProp)

Exercise 2.4.1: Show in Isabelle that the canonical model of G satisfies all
semantic consequences of GG. Hint: That shoule be easy: just use sledgeham-
mer.
lemma isacise-2-4-1:

fixes G

assumes M = canonical-model G

assumes G =G g (TYPE(atProp))
shows M | ¢

Exercise 2.4.2: Show in Isabelle that if the canonical model M of G satisfies
g then G F g. Hint: This should be similar to lemma-2-4-2 of the previous
section.
lemma isacise-2-4-2:

fixes G g M

assumes M = canonical-model G

assumes M | ¢
shows G I g

end

8 Hint: Construct explicitely the set of all formulas using def X = {All n are n, ...},
then use sledgehammer to prove that this set has 9 elements and then go on to prove X
= A (where A is as in ezample-2-1-aa).

9 rule applies an introduciton rule and + denotes a tactics that iterates this as long as
possible [4].

12
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